GediPNet logo

GSK3B (glycogen synthase kinase 3 beta)

Gene
Entrez ID Entrez Gene ID - the GENE ID in NCBI Gene database.
2932
Gene nameGene Name - the full gene name approved by the HGNC.
Glycogen synthase kinase 3 beta
Gene symbolGene Symbol - the official gene symbol approved by the HGNC, which is a short abbreviated form of the gene name.
GSK3B
SynonymsGene synonyms aliases
-
ChromosomeChromosome number
3
Chromosome locationChromosomal Location - indicates the cytogenetic location of the gene or region on the chromosome.
3q13.33
SummarySummary of gene provided in NCBI Entrez Gene.
The protein encoded by this gene is a serine-threonine kinase belonging to the glycogen synthase kinase subfamily. It is a negative regulator of glucose homeostasis and is involved in energy metabolism, inflammation, ER-stress, mitochondrial dysfunction, and apoptotic pathways. Defects in this gene have been associated with Parkinson disease and Alzheimer disease. [provided by RefSeq, Aug 2017]
miRNAmiRNA information provided by mirtarbase database.
miRTarBase ID miRNA Experiments Reference
MIRT004676 hsa-miR-26a-5p Luciferase reporter assay, Microarray, qRT-PCR, Western blot 20525681
MIRT004676 hsa-miR-26a-5p Immunoblot, Immunofluorescence, Immunoprecipitaion, Luciferase reporter assay, qRT-PCR 22484120
MIRT004676 hsa-miR-26a-5p PAR-CLIP 21572407
MIRT004676 hsa-miR-26a-5p PAR-CLIP 20371350
MIRT004676 hsa-miR-26a-5p Luciferase reporter assay 26854694
Transcription factors
Transcription factor Regulation Reference
CDX2 Unknown 24501326
CREB1 Unknown 11579131
NFKB1 Unknown 11579131
TFCP2 Unknown 16973241
Gene ontology (GO)Gene ontology information of associated ontologies with gene provided by GO database.
GO ID Ontology Definition Evidence Reference
GO:0001085 Function RNA polymerase II transcription factor binding IPI 20864106
GO:0001837 Process Epithelial to mesenchymal transition IMP 15448698
GO:0001954 Process Positive regulation of cell-matrix adhesion IMP 18156211
GO:0002020 Function Protease binding IPI 25118933
GO:0002039 Function P53 binding IDA 14744935
Other IDsOther ids provides unique ids of gene in databases such as OMIM, HGNC, ENSEMBLE.
MIM
HGNC
e!Ensembl
Protein
UniProt ID P49841
Protein name Glycogen synthase kinase-3 beta (GSK-3 beta) (EC 2.7.11.26) (Serine/threonine-protein kinase GSK3B) (EC 2.7.11.1)
Protein function Constitutively active protein kinase that acts as a negative regulator in the hormonal control of glucose homeostasis, Wnt signaling and regulation of transcription factors and microtubules, by phosphorylating and inactivating glycogen synthase (GYS1 or GYS2), EIF2B, CTNNB1/beta-catenin, APC, AXIN1, DPYSL2/CRMP2, JUN, NFATC1/NFATC, MAPT/TAU and MACF1. Requires primed phosphorylation of the majority of its substrates. In skeletal muscle, contributes to insulin regulation of glycogen synthesis by phosphorylating and inhibiting GYS1 activity and hence glycogen synthesis. May also mediate the development of insulin resistance by regulating activation of transcription factors. Regulates protein synthesis by controlling the activity of initiation factor 2B (EIF2BE/EIF2B5) in the same manner as glycogen synthase. In Wnt signaling, GSK3B forms a multimeric complex with APC, AXIN1 and CTNNB1/beta-catenin and phosphorylates the N-terminus of CTNNB1 leading to its degradation mediated by ubiquitin/proteasomes. Phosphorylates JUN at sites proximal to its DNA-binding domain, thereby reducing its affinity for DNA. Phosphorylates NFATC1/NFATC on conserved serine residues promoting NFATC1/NFATC nuclear export, shutting off NFATC1/NFATC gene regulation, and thereby opposing the action of calcineurin. Phosphorylates MAPT/TAU on 'Thr-548', decreasing significantly MAPT/TAU ability to bind and stabilize microtubules. MAPT/TAU is the principal component of neurofibrillary tangles in Alzheimer disease. Plays an important role in ERBB2-dependent stabilization of microtubules at the cell cortex. Phosphorylates MACF1, inhibiting its binding to microtubules which is critical for its role in bulge stem cell migration and skin wound repair. Probably regulates NF-kappa-B (NFKB1) at the transcriptional level and is required for the NF-kappa-B-mediated anti-apoptotic response to TNF-alpha (TNF/TNFA). Negatively regulates replication in pancreatic beta-cells, resulting in apoptosis, loss of beta-cells and diabetes. Through phosphorylation of the anti-apoptotic protein MCL1, may control cell apoptosis in response to growth factors deprivation. Phosphorylates MUC1 in breast cancer cells, decreasing the interaction of MUC1 with CTNNB1/beta-catenin. Is necessary for the establishment of neuronal polarity and axon outgrowth. Phosphorylates MARK2, leading to inhibit its activity. Phosphorylates SIK1 at 'Thr-182', leading to sustain its activity. Phosphorylates ZC3HAV1 which enhances its antiviral activity. Phosphorylates SNAI1, leading to its BTRC-triggered ubiquitination and proteasomal degradation. Phosphorylates SFPQ at 'Thr-687' upon T-cell activation. Phosphorylates NR1D1 st 'Ser-55' and 'Ser-59' and stabilizes it by protecting it from proteasomal degradation. Regulates the circadian clock via phosphorylation of the major clock components including ARNTL/BMAL1, CLOCK and PER2 (PubMed:19946213, PubMed:28903391). Phosphorylates CLOCK AT 'Ser-427' and targets it for proteasomal degradation (PubMed:19946213). Phosphorylates ARNTL/BMAL1 at 'Ser-17' and 'Ser-21' and primes it for ubiquitination and proteasomal degradation (PubMed:28903391). Phosphorylates OGT at 'Ser-3' or 'Ser-4' which positively regulates its activity. Phosphorylates MYCN in neuroblastoma cells which may promote its degradation (PubMed:24391509). Regulates the circadian rhythmicity of hippocampal long-term potentiation and ARNTL/BMLA1 and PER2 expression (By similarity). Acts as a regulator of autophagy by mediating phosphorylation of KAT5/TIP60 under starvation conditions, leading to activate KAT5/TIP60 acetyltransferase activity and promote acetylation of key autophagy regulators, such as ULK1 and RUBCNL/Pacer (PubMed:30704899). Negatively regulates extrinsic apoptotic signaling pathway via death domain receptors. Promotes the formation of an anti-apoptotic complex, made of DDX3X, BRIC2 and GSK3B, at death receptors, including TNFRSF10B. The anti-apoptotic function is most effective with weak apoptotic signals and can be overcome by stronger stimulation (PubMed:18846110).
PDB 1GNG , 1H8F , 1I09 , 1J1B , 1J1C , 1O6K , 1O6L , 1O9U , 1PYX , 1Q3D , 1Q3W , 1Q41 , 1Q4L , 1Q5K , 1R0E , 1UV5 , 2JDO , 2JDR , 2JLD , 2O5K , 2OW3 , 2UW9 , 2X39 , 2XH5 , 3CQU , 3CQW , 3DU8 , 3E87 , 3E88 , 3E8D , 3F7Z , 3F88 , 3GB2 , 3I4B , 3L1S , 3M1S , 3MV5 , 3OW4 , 3PUP , 3Q3B , 3QKK , 3SAY , 3SD0 , 3ZDI , 3ZRK , 3ZRL , 3ZRM , 4ACC , 4ACD , 4ACG , 4ACH
Family and domains

Pfam

Accession ID Position in sequence Description Type
PF00069 Pkinase
56 340
Protein kinase domain
Domain
Sequence
Sequence length 420
Interactions View interactions

| © 2021, Biomedical Informatics Centre, NIRRH |
ICMR-National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai-400012
Tel: +91-22-24192104, Fax No: +91-22-24139412